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Abstract
The Langevin diffusion equation approach is proposed for studying the metal–
nonmetal (M–NM) transitions in expanded fluid mercury from a mesoscopic
and dynamical viewpoint. In this theory, time evolutions of coarse-grained
atomic densities are calculated in accordance with the free energy functionals
that incorporate changes in the electronic states across the M–NM transitions.
Because of the intrinsically discontinuous nature of the M–NM transitions,
irregular mixing of high-density metallic domains and low-density nonmetallic
domains is predicted in the M–NM transition range. Thermal fluctuations
cause local transformation between metallic and nonmetallic domains. The
timescale of structural relaxation involving such a local M–NM transition is
remarkably slow, which is reflected in the strikingly slow time decay of the
dynamical density correlation functions in the M–NM transition range. This
result strongly supports the experimental evidence of slow structural relaxation
found through anomalous sound wave attenuation. An increase in isothermal
compressibilities and a modest enhancement of long-wavelength static structure
factors are predicted across the transition. Discontinuous density jumps are
smeared out by structural disorder, leading to a continuous M–NM transition
in agreement with observations.

1. Introduction

Expanded fluid metals undergo metal–nonmetal (M–NM) transitions and gas–liquid
transitions [1]. Elucidation of the electronic and thermodynamic properties and the
mechanisms of phase transitions in expanded fluid metals remains one of the basic outstanding
issues in condensed-matterphysics [1–4]. The optical gap and Knight shift measurements have
revealed that M–NM transitions of mercury take place in the density range of 8–10 g cm−3

[1, 4]. In this regime, the transition proceeds gradually, without sharp discontinuities in the
thermodynamic quantities or transport coefficients such as the electronic conductivities. The
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gas–liquid critical point is located at a lower density, ρc = 5.8 g cm−3, with the critical
temperature of Tc = 1751 K [1, 4].

Basic mechanisms for the M–NM transitions have been argued from the point of view of
electronic-state theories. At low densities, the highest occupied band is the completely filled
6s band, which is separated from the unoccupied 6p band by a finite energy gap; the system
thus exhibits semiconducting behaviour. The energy gap decreases as the density increases
and eventually overlap of the 6s and 6p bands occurs, where the system turns into a metallic
state [1, 4]. Numerical results of the ab initio molecular dynamics simulations by Kresse
and Hafner [5] support such a simple band overlap transition mechanism, where localization
or correlation of electrons does not play a significant role. The non-ideal-plasma theories [6]
described the M–NM transition in terms of pressure ionization and predicted a sudden increase
of Hg2+ ions across metallization.

In addition to such an electronic origin, it is also essential to consider the effect of
atomic structural disorder on the M–NM transitions. X-ray diffraction measurements of
static structure factors and radial distribution functions [9] have revealed that fluid mercury
undergoes inhomogeneous expansion, where atomic coordination numbers change appreciably
with density while interatomic distances are kept almost constant. The interplay between
density inhomogeneities and thermodynamic/transportproperties near M–NM transitions have
been investigated through theoretical models, such as semiclassical percolation theories [7]
and lattice-gas theories [2, 8, 10, 11].

Most of the previous studies mentioned above have focused on the static aspect of the
M–NM transitions. Recently, there appeared experimental reports by Kohno and Yao [12]
on evidence of slow structural relaxation associated with the M–NM transition in fluid
mercury. These authors observed anomalous sound attenuation in the M–NM transition
range (8–10 g cm−3), which was interpreted as an increase of bulk viscosity due to slow
relaxation [13]. By adopting the Debye relaxation formula for the bulk viscosity, these authors
evaluated the relaxation time to be approximately 2 ns throughout the M–NM transition range.
Because this timescale is considerably larger than the typical timescale of individual atomic
motion in liquids (roughly of the order of picoseconds [14]), participation of large-scale atomic
motion in slow relaxation is strongly suggested.

Elucidation of the origin of slow structural relaxation is beyond the capability of the
ab initio microscopic simulations [5], due to limitations on system size and/or computational
time. An alternative theoretical tool, which is more suitable for the present purpose, is the
Langevin equation approach, in which mesoscopic atomic structures may be described by
the appropriate free energy functionals and thermal fluctuations are mimicked by the random
Gaussian noise [15–17]. Formulations of simple Langevin diffusion (LD) equations for density
fluctuation in liquids have been put forward by Munakata [16] in the context of dynamical
density functional theory. So far, the Langevin equation approach has been applied to simple
liquids where electrons do not play explicit roles [15, 16]. We expect that the additional
inclusion of electronic contributions into the free energy functionals in the LD equations would
enable one to treat interesting situations where slow atomic dynamics is interrelated with the
electronic transitions, and to gain insights into dynamical aspects of the M–NM transitions in
liquids.

The principal aim of this paper is to construct a LD approach for simulating mesoscopic
atomic dynamics in the M–NM transition range of fluid mercury, and thereby to elucidate the
physical origin of the observed slow structural relaxation. Analytic expressions of Helmholtz
free energies for homogeneous metallic and nonmetallic phases are needed as an input to the
LD equations; they are formulated in sections 2 and 3, respectively. Through comparison
of the metallic and nonmetallic free energies, we present naive considerations of the M–NM
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transitions in section 4. The LD equation is then formulated in section 5. Numerical simu-
lations based on the LD equation are carried out near M–NM transitions and results on static
and dynamical properties are given in section 6. Finally, section 7 is devoted to a summary
and discussion.

2. Nonmetallic phase

Fluid mercury in the nonmetallic phase can be regarded as a mixture of neutral Hg atoms,
Hg+ ions and conduction electrons (e−). Let us write the total atomic density as n and the
ionization degree as cI. The number densities of Hg, Hg+ and e−, are then given by n(1 − cI),
ncI and ncI, respectively. We assume weak ionization cI � 1, which is proven to be valid in
the nonmetallic phase; this assumption allows one to treat conduction electrons with classical
statistics. Contributions from molecules and clusters are expected [4, 20] but are neglected
here for simplicity.

The interaction between Hg atoms may be described by the Lennard-Jones potential,
VLJ(r) = 4εvdW[(σ/r)12 − (σ/r)6], where the potential parameters have been determined
from viscosity measurements in the low-density gas phase [18] as

σ = 2.898 Å, εvdW/kB = 851 K. (1)

We assume that Hg+ ions also have the same core diameter, σ .
Conduction electrons produce electric fields and induce electric dipole moments in

surrounding Hg atoms. The resultant e−–Hg interaction plays a crucial role near the gas–
liquid critical point [1, 6]; it is an attractive interaction and may be modelled [19] by a potential
Vpol(r) = −αe2/2(r2+r2

α)2, where r denotes the interparticle distance and α = 37a3
B represents

the atomic polarizability of a Hg atom [20], with aB being the Bohr radius. The short-range
cut-off parameter rα has been introduced to avoid unphysical divergence at r → 0.

The Helmholtz free energy in units of V kBT/σ 3, with V being the volume of the system
and T being the temperature, due to the e−–Hg interaction may be estimated roughly as

Fpol = 4πn2cI(1 − cI)σ
3

kBT

∫ rcut

0
dr r2Vpol(r) � − εpol

kBT

(
1 − 4

π

rα

rcut

)
φ2cI(1 − cI), (2)

where the parameter

εpol ≡ π2 α

σ 3

e2

rα

(3)

measures the strength of the e−–Hg interaction, and φ ≡ nσ 3. In deriving the last equality in
equation (2), we have assumed rα � rcut, which is actually satisfied throughout the nonmetallic
phase under consideration.

The upper cut-off distance rcut in equation (2) describes the screening length of the e−–Hg
interaction, which means that each conduction electron can attract those atoms that lie within a
sphere of radius rcut around it. Noting that there are many conduction electrons in the system,
geometrical considerations lead us to an estimation rcut = ζae, where ae ≡ (3/4πncI)

1/3

denotes the average distance between conduction electrons and ζ is an adjustable parameter
of the order of unity. Local-field effects arising from many-body dipolar interactions reduce
e−–Hg interactions slightly [19], but they are not considered here for simplicity.

We also remark here that the Hg+–Hg interaction is a secondary effect compared with the
e−–Hg interaction [1], because the short-range cut-off radius for the former is σ/2, which is
larger than rα as we shall see later.
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In terms of the dimensionless total atomic density φ ≡ nσ 3, the total Helmholtz free
energy in units of V kBT/σ 3 may then be expressed as [20]

FNM(φ, cI) = φ(1 − cI)

{
ln

[(
λA

σ

)3

φ(1 − cI)

]
− 1

}
− φ ln(1 − φ) − 4εvdW

kBT
φ2(1 − cI)

2

+ φcI

{
ln

[(
λA

σ

)3

φcI

]
+ ln

[(
λe

σ

)3

φcI

]
− 2

}
+

Ip1

kBT
φcI

− εpol

kBT
[1 − A(φcI)

1/3]φ2cI(1 − cI), (4)

where λA ≡
√

2π h̄2/mAkBT and λe ≡
√

2π h̄2/mekBT are thermal de Broglie wavelengths
for atoms (ions) and electrons, respectively; mA = 3.331 × 10−22 g denotes the atomic mass,
me designates the electron mass and Ip1/kB = 1.211 × 105 K is the first ionization energy
of an isolated Hg atom [21]. The second ionization energy for the process Hg+ → Hg2+ + e−
amounts to Ip2/kB = 2.177 × 105 K [21], which is so large that the contributions of Hg2+

ions may be neglected [6]. The second term on the right-hand side of equation (4) describes
the hard-core repulsion, while the third term refers to the van der Waals attractive interaction
among neutral Hg atoms. The final negative term corresponds to the e−–Hg interaction, with

A = 4

π

(
4π

3

)1/3 rα

ζσ
. (5)

For given φ and T , the degree of ionization cI is determined through minimization of
equation (4), (∂F/∂cI)φ,T = 0, which yields

cI =
√

2

(
σ

λe

)3 1

φ
exp

(
− 
G

2kBT

)
, (6)

with


G = Ip1 − εpolφ(1 − 2cI) + 8εvdWφ(1 − cI) + εpol A(φcI)
1/3φ

(
4
3 − 7

3 cI
)
. (7)

Equation (6) takes the form of the law of mass action,with equation (7) representing an effective
energy of promoting one electron from the valence band to the conduction band. Since 
G
depends on cI, equation (6) should be solved numerically in a self-consistent manner.

The pressure in units of kBT/σ 3, which we write as PNM, can be obtained through
equations (4) and (6) as PNM = φ(∂FNM/∂φ)cI,T − FNM, leading to

PNM(φ, cI) = φ

1 − φ
− 4εvdW

kBT
φ2(1 − cI)

2 + φcI − εpol

kBT

[
1 − 4

3
A(φcI)

1/3

]
φ2cI(1 − cI). (8)

Formula (8) indicates that both the van der Waals and e−–Hg interaction terms make negative
contributions to the pressure, causing gas–liquid transitions. The critical density φc and critical
temperature Tc are determined through solutions to the equation(

∂PNM

∂φ

)
T

=
(

∂2PNM

∂φ2

)
T

= 0, (9)

where the derivatives should be taken under the ionization equilibrium condition,
(∂FNM/∂cI)φ,T = 0.

The predictions of φc and Tc depend on the two adjustable parameters, rα and ζ .
We optimize these parameters so that we can reproduce the experimental critical point,
ρc = 5.8 g cm−3 (φc = 0.424) and Tc = 1750 K. We thus obtain

rα = 0.942 Å, ζ = 0.336. (10)
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Figure 1. The ionization degree at T = Tc = 1750 K as a function of density. Dots and the thick
full curve refer to the simulation results of 〈Z〉, while the broken curve refers to the prediction on
cI by equation (6). Plots of 
G (thin full curve) and the experimentally measured optical gap [4]
(dotted curve) are also presented in units of eV.

The critical pressure turns out to be Pc = 2.71 kbar, which is somewhat larger than the
experimental value of 1.67 kbar. The fact that rα < σ/2 indicates that conduction electrons
can penetrate into the core of an atom. The above estimation leads to A = 1.99 and
εpol/kB = 3.93 × 105 K. A large value of εpol is especially notable when it is compared with
thermal energy and van der Waals energy. Substantial enhancement of the critical temperature
is brought about by the e−–Hg interaction [6].

In figure 1, we plot 
G and cI at T = Tc = 1750 K as functions of φ. The ionization
degree at the critical point is cI = 4.3 × 10−3. At low densities, 
G decreases linearly with
φ, because cI � 1 and 
G ≈ Ip1 − εpolφ from equation (7); ionization proceeds rapidly
with increasing φ. As φ becomes comparable to φc, the density dependence of 
G becomes
weaker, because the screening factor of the e−–Hg interaction, which is expressed as A(φcI)

1/3

in equation (7), begins to play a role. We find that the overall behaviour of 
G is in reasonable
agreement with the more detailed calculation by Nagel et al [6] and also with the measured
optical gap near φc [4].

3. Metallic phase

When the density becomes so high that valence and conduction bands overlap, the system
enters the metallic phase consisting of doubly charged ions (Hg2+) and degenerate conduction
electrons (e−). Let the number density of ions be n. The electron density is then ne = Zn; Z
is the ionic valence, which we set as Z = 2 hereafter.

Total free energies of fluid metallic mercury may be decomposed into contributions from
the ionic subsystem, electronic subsystem and electron–ion interaction [22, 23], that is:

FM(φ) = φ

{
ln

[(
λA

σ

)3

φ

]
− 1

}
− φ ln

[
1 −

(
σI

σ

)3

φ

]
+ Zφ

(
f id
e + fee

)
+ φ

Ip1 + Ip2

kBT

+ φ[uOCP
ex (�) − sOCP

ex (�eff) + uBS + u0]. (11)

Here, φ ≡ nσ 3 is the dimensionless atomic density defined in section 2; σI represents the core
diameter of a Hg2+ ion. Since the radial distribution function in the metallic regime virtually
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vanishes at r < 2.0 Å [5, 9], we may set σI = 2.0 Å. We have confirmed that the total free
energy is not so sensitive to the choice of σI.

To describe the electronic system, we introduce a dimensionless density parameter and
Coulomb coupling parameter according to [24]:

rs = ae

h̄2/mee2
, �e = e2

aekBT
, (12)

where ae = (3/4πne)
1/3 is the Wigner–Seitz radius and me is the electron mass.

The function f id
e refers to the free energy per particle of the ideal-gas electrons in units

of kBT ; it is expressed as f id
e = 3EF/5kBT , with the Fermi energy EF = h̄2(3π2ne)

2/3/2me.
The condition EF � kBT is satisfied throughout the density regime under consideration, so
that finite-temperature effects for the electrons can be neglected.

The exchange–correlation free energy of the electron liquid can be written as [24]

fee =
[
−3

4

(
3

2π

)2/3

+
rs

2
Ec(rs)

]
�e, (13)

where the correlation energy Ec(rs) has been expressed in a parametrized form by Vosko et al
[25], on the basis of the Green function Monte Carlo data by Ceperley and Alder [26].

The Madelung energy of the ions immersed in a uniform background of negative charges
may be evaluated by the excess internal energy formula of the classical one-component
plasma (OCP). We use the analytic expression based on the Monte Carlo results by Ogata
and Ichimaru [24]:

uOCP
ex (�) = −0.898 004� + 0.967 86�1/4 + 0.220 703�−1/4 − 0.860 97, (14)

with the Coulomb coupling parameter for a classical ion OCP being given by � = Z 5/3�e.
Formula (14) is valid in the strong coupling regime, 1 � � < 180.

We formulate electron–ion interaction free energies by following the conventional
pseudopotential perturbation theory in the nearly-free electron approximation [22, 23]. For
the electron–ion interaction, we adopt Shaw’s model potential [22, 27]:

V p(r) =
{−Ze2/RM, for r < RM,

−Ze2/r, for r � RM,
(15)

where RM is an adjustable parameter, to be determined below. The contributions of the
electron–ion interaction to the free energy may be divided into the so-called Hartree energy
u0 and the band structure energy uBS [22, 23]. The Hartree energy is independent of the ionic
structure and is evaluated as

u0 = 1

2

(
RM

ae

)2

Z�e. (16)

The quantities uBS and sOCP
ex (�) depend explicitly on the ionic structure. The static

structure factors of the ions are usually approximated by those of a suitable reference system,
either a hard-sphere or OCP fluid, with the variational parameters being determined through
minimization of the total free energy [23, 29]. For the purpose of constructing the analytic free
energy formula, however, we considerably simplify this procedure and employ an approximate
analytic expression for the band structure energy as

uBS = − Z 1/3ae

4R2
MkIS

�

[
1

kIS Ds + 1
− kIS Ds exp(−2RM/Ds) − exp(−2kIS RM)

k2
IS D2

s − 1

]
. (17)

Here, kIS = 1.8/(Z 1/3ae) is a parameter related to the ionic structure factor; Ds is the short-
range screening distance of the electrons which is related to the dielectric response of the
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electrons against ions. A simple fitting formula for Ds is available for degenerate electron
liquids [24, 28], which is

Ds = ae

1.239r0.435
s

. (18)

The derivation of equation (17) is explained in the appendix.
The excess entropy of the ionic system may likewise be evaluated on the basis of the

Monte Carlo data for OCP [24], which may be written as

sOCP
ex (�) = −2.902 68�1/4 + 1.103 515�−1/4 + 0.860 97 ln � + 1.665 95, (19)

In applying this formula to equation (12), reduction of interionic Coulomb repulsion due to
electron screening is taken into account through introducing the effective Coulomb-coupling
parameter �eff [24, 28]:

�eff = � exp

(
−κ

Z 1/3ae

Ds

)
, (20)

where κ is an adjustable parameter of the order of unity.
Three adjustable parameters RM and κ are determined through comparison with existing

experimental data at atmospheric pressure [22]. We thus adopt

RM = 1.14 Å, κ = 0.7. (21)

With the use of these parameter values, the cohesive energy (relative to Hg gas) at 273 K is
calculated as 0.0530 Ryd/atom, which is in reasonable agreement with the experimental value,
0.04 Ryd/atom. The calculated equilibrium density at 273 K is 13.6 g cm−3, which agrees
excellently with the experimental value. The entropy per atom in units of kB amounts to 5.23
at melting temperature (234 K), while the corresponding experimental value is 8.0.

We list typical values of the plasma parameters defined above. At φ = 0.9 and
T = 1750 K, which is in the M–NM transition range, we have rs = 2.8, kBT/EF = 0.023,
� = 205 and �eff = 37. Smallness of kBT/EF validates our use of a zero-temperature
equation of state for the electrons. The difference between �eff and � manifests the reduction
of interionic Coulomb repulsion due to electron screening.

4. Metal–nonmetal transition

A salient feature concerning the M–NM transition is the possible occurrence of a first-order
phase transition [2]. Figure 2 illustrates the free energy per atom for the metallic phase and that
for the nonmetallic phase at T = 1750 K plotted against the dimensionless atomic volume.
One finds the M–NM transition density φMNM at which the crossover takes place from the
nonmetallic branch to metallic branch, i.e. FNM(φMNM) = FM(φMNM). A kink appears in the
free energy curve due to a sudden change in the nature of the cohesive force at φMNM. One can
then construct a common tangent to the free energy curve with two contact points, φNM and
φM. This is a first-order phase transition, characterized by a discontinuous change in φ from
φNM to φM [2].

It should be noted, however, that the experimentally observed equation of state and
electrical conductivities change continuously with density and show no clear evidence of a
discontinuous phase transition [1, 3]. As we shall see in the next section, structural disorder
arising from thermal fluctuations smears out the discontinuous jump of density and makes the
M–NM transitions continuous.

The contours of φNM, φM and φMNM so obtained are exhibited in figure 3 together with the
gas–liquid coexistence curve. The region φNM � φ � φM designates the M–NM transition
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Figure 2. Comparison of the free energies, FNM(φ)/φ (broken curve) and FM(φ)/φ (full curve)
at T = 1750 K. The common tangent to these free energy curves is depicted by the dotted line.
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Figure 3. Plot of the M–NM transition line (dotted curve), metallic and nonmetallic phase
boundaries (full curves) and the gas–liquid coexistence curve (thick full curve) obtained through
equations (4) and (11).

range. It is found that the temperature dependence of φMNM is relatively weak and the M–NM
transition is controlled mainly by the atomic density.

The M–NM transition density is determined through a delicate balance between the
metallic and nonmetallic free energies, which makes it difficult to determine the value of φMNM

accurately. Indeed, the present theory predicts the M–NM transition in the density range of
11.2–13.7 g cm−3, while the experimentally observed transition range is 8–10 g cm−3 [4].
It is likely that the origin of such disagreement is the breakdown of the nearly-free electron
approximation in the metallic free energy. Since metallic mercury is divalent, the electron–
ion interaction is stronger compared with monovalent alkali metals. Consideration of strong
electron–ion coupling [28] would lead to a reduction of the electron screening length Ds and
thus to stabilizing the metallic phase at lower densities. Such an improvement of the equations
of state is not pursued in the present paper, however.
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5. Langevin diffusion equation

When the state of a fluid is in the M–NM transition range, there is a possibility that thermal
fluctuations spontaneously generate high-density metallic regions and low-density nonmetallic
regions in the system. Let φ(r, t) be the dimensionless local atomic density at position r and
time t . The hydrodynamic approach is considered here, so that φ(r, t) should be interpreted as
a quantity obtained by averaging microscopic local atomic density over a volume (
r)3 that
is macroscopically small but large enough to contain a number of atoms inside it [14]. Time
evolutions of φ(r, t) may then be calculated through the LD equation [16]:

∂φ(r, t)

∂ t
= ∇ ·

{
Dφ(r, t)∇ δ(βσ 3 F)

δφ(r, t)

}
− ∇ · jR(r, t). (23)

Here, the parameter D refers to the diffusion constant, whose density–temperature dependence
is neglected for simplicity; β ≡ 1/kBT refers to the inverse temperature.

In equation (23), F[φ] stands for the Helmholtz free energy functional. We adopt the
coarse-grained functional form based on the square-gradient approximation [33] as

βσ 3 F[φ] =
∫

drF[φ(r, t)] =
∫

dr
[
Fhomo[φ(r, t)] +

Cgrad

2
|∇φ(r, t)|2

]
. (24)

The functional derivative in equation (23) can then be evaluated as

δ(βσ 3 F)

δφ(r, t)
= ∂Fhomo(φ(r, t))

∂φ(r, t)
− Cgrad∇2φ(r, t). (25)

The function Fhomo(φ) refers to the free energy density of the homogeneous phase. As we
have seen in the previous section, it is expressed as

Fhomo(φ) =
{
FNM(φ), for φ < φMNM,

FM(φ), for φ � φMNM,
(26)

in conjunction with equations (4) and (11). The electronic transitions are described by
equation (26), which in turn affects atomic density fluctuations through equation (23).

The coefficient of the gradient term, Cgrad, is related to the long-wavelength behaviour of
the Fourier-transformed direct correlation function c(k) [14, 33, 34], that is:

Cgrad = − 1

2σ 3

d2c(k = 0)

dk2
≡ − 1

2σ 3
c′′(0). (27a)

It has been known that c(k) is related to the static structural factor S(k) of the ions [14].
Experimental data on S(k), though not available for the very small k regime, exhibit a minimum
at about 1 Å−1 in the nonmetallic phase, which is not clearly seen in the metallic phase [35].
This suggests that c′′(0) > 0 in the dense metallic regime and c′′(0) < 0 in the nonmetallic
phase close to the gas–liquid critical point [36]. Therefore, we expect that c′′(0), and hence
Cgrad, may be close to zero in the intermediate density range near the M–NM transitions. This
trend has actually been predicted by theoretical calculations for liquid alkali metals [34]. Near
the gas–liquid critical point where c′′(0) < 0, it is convenient to rewrite equation (27a) in the
form

Cgrad = ξ2

φ

(
∂Phomo

∂φ

)
T

, (27b)

where ξ denotes the correlation length [31]. With the aid of the experimental data on ξ [30] and
theoretical calculations of (∂Phomo/∂φ)T with equation (8), we can estimate Cgrad/σ

2 ≈ 11
near the gas–liquid critical point. Therefore, we may at least infer that Cgrad/σ

2 < 11 in the
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M–NM transition range. Since the accurate density–temperature dependence of Cgrad is not
known for mercury, we simply study the two cases, Cgrad/σ

2 = 9.0 and 1.0.
The random noise current jR(r, t) describes the effect of thermal fluctuation. It should

satisfy the fluctuation-dissipation theorem [16]:

〈 jRi(r, t) jR j(r′, t ′)〉 = 2Dφ(r, t)σ 3δi jδ(r − r′)δ(t − t ′) (i, j = x, y, z), (28)

where 〈· · ·〉 denotes the statistical average. It can then be proven [16] that the LD equation (23)
samples density fluctuations with the Boltzmann weight exp(−β F[φ]).

The derivation of equation (23) involves several assumptions: first, it has been assumed
that φ is the only variable that changes slowly in time; the time dependence of other quantities,
such as the velocity field, has been neglected [16]. Such an assumption may be validated
in the present study, because we are concerned with slow density relaxation. Second, as
usual, we have assumed that the electronic states are determined instantaneously for a given
atomic configuration (adiabatic approximation). Finally, local charge neutrality and local
thermodynamic equilibrium are assumed.

Equation (23) can be rewritten in a dimensionless form in such a way that the length and
time are measured in units of σ and σ 2/D, respectively [16]. Numerical simulations based
on equation (23) have then been performed in a two-dimensional space, because full three-
dimensional simulations may cost too much computational time to explore the dependences of
the numerical results on various input parameters. It should be stressed here that we use the free
energy functionals formulated for the usual three-dimensional fluids. We shall discuss later in
section 7 how the final results may be modified in the case of three-dimensional simulations.

Numerical integrations of equation (23) have been carried out using the Euler algorithm
with the time step 
t = 0.02σ 2/D, for a square supercell of length L. Periodic boundary
conditions have been imposed. The supercell has been divided into N × N pieces of cells,
each having a linear dimension 
r ; we adopt N = 128 for all simulation runs. In light of the
two-dimensional counterpart to expression (28), the noise current is generated for each cell
and each time step in accordance with

jRi(r, t) =
√

2φ(r, t)D

(
t)(
r/σ)2
p(r, t), (i, j = x, y), (29)

where p(r, t) represents the normal (Gaussian) deviate with zero mean and unit variance.
The appropriate choice of cell size 
r should be mentioned [37]. Apparently, 
r should

be sufficiently large so that the use of the bulk free energy for each cell can be justified. When

r is set too large, however, the possibilities of a simultaneous coexistence of metallic and
nonmetallic phases in a single cell may be overlooked. It may be reasonable to set 
r close
to the possible minimum size of a metallic domain. In this regard, we notice the theoretical
study by Pastor and Bennemann [32], showing that a mercury cluster exhibits electronic states
characteristic of a bulk metal when the number of constituent atoms exceeds approximately
80. The linear dimension of such a cluster may be estimated roughly as 801/3σ = 4.3σ by
assuming a nearest-neighbour distance of σ . In this way, we adopt 
r = 4σ in most of the
simulation runs; the dependence of the final results on the choice of 
r will be argued later in
section 6.3.

Each simulation run has been started with an initial condition with a homogeneous density
distribution, i.e. φ(r, t = 0) = 〈φ〉. Density inhomogeneity is then generated by the random
force, equation (29). Total simulation time for each run is 300–4500 in units of σ 2/D after
thermal equilibration has been achieved.
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Figure 4. Snapshot of the histogram of φ at T = 1750 K for three different average densities:
〈φ〉 = 0.7 (broken curve), 0.9 (full curve) and 1.05 (dotted curve).

6. Simulation results

6.1. Static properties

Figure 4 illustrates the snapshot of a histogram of local atomic density at T = 1750 K,
calculated for three different mean densities 〈φ〉. At the lowest density 〈φ〉 = 0.7,
corresponding to the pure nonmetallic phase, the histogram exhibits a trivial single-peak
structure, indicating density fluctuation around the mean density; the distribution is confined
within the nonmetallic phase, φ < φMNM. A similar behaviour is observed at the highest
density 〈φ〉 = 1.05, corresponding to the pure metallic phase. At an intermediate density
〈φ〉 = 0.9, close to the M–NM transition density φMNM = 0.907, we observe a two-peak
structure in contrast to the former two cases. One of the peaks is located at a density in
the metallic regime (φ > φMNM), while the position of the other peak is contained in the
nonmetallic regime (φ < φMNM). This indicates the coexistence of metallic and nonmetallic
domains in the system. Irregular mixing of the two types of domains is clearly demonstrated
in the snapshot of spatial patterns shown in figure 5.

As metallization proceeds, the high-density peak grows and the low-density peak
diminishes; the relative fraction of the metallic component increases with 〈φ〉, leading to a
continuous increase of the ionization degree. We plot in figure 1 the average ionization degree,
〈Z〉, obtained by taking spatial and time averages of the local ionization degree:

Z(r, t) ≡ ne(r, t)

n(r, t)
=

{
cI(r, t), for φ(r, t) < φMNM,

2, for φ(r, t) � φMNM.
(30)

A gradual increase of 〈Z〉 can be found in the M–NM transition range, φNM � 〈φ〉 � φM.
At lower densities 〈φ〉 < φNM, the metallic component is negligible and 〈Z〉 asymptotically
approaches cI obtained from equation (6).

To see how such inhomogeneous atomic structures in the M–NM transitions may be
reflected in static physical quantities, we calculate the static structure factor, which may be
defined in the two-dimensional case as

S(k) = 1

(Lσ)2

〈|δφ(k, t)|2〉
〈φ〉 , (31)
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Figure 5. Snapshot of a spatial pattern for 〈φ〉 = 0.9
and T = 1750 K. Metallic domains are plotted in black.
The linear dimension of the system is L = N
r =
1.48 × 103 Å.

where

δφ(k, t) =
∫

L2

dr [φ(r, t) − 〈φ〉] exp(−ik · r). (32)

In the density regime far from the M–NM transitions, the magnitude of φ − 〈φ〉 may
always be small, as figure 4 indicates. One can then expand Fhomo(φ) in equation (24) with
respect to φ − 〈φ〉 to yield

βσ 3F[φ] � βσ 3F[〈φ〉] +
∫

dr
{

1

2〈φ〉
(

∂Phomo(〈φ〉)
∂φ

)
T

[φ(r, t) − 〈φ〉]2

+
Cgrad

2
|∇φ(r, t)|2

}
. (33)

Then, equation (23) is reduced to the form

∂δφ(k, t)

∂ t
� − D

L2

∑
q

δφ(k − q, t)

[
1

〈φ〉
(

∂Phomo(〈φ〉)
∂φ

)
T

+ Cgradq2

]
δφ(q, t)q · k

− D〈φ〉k2

[
1

〈φ〉
(

∂Phomo(〈φ〉)
∂φ

)
T

+ Cgradk2

]
δφ(k, t) + θ(k, t), (34)

with

θ(k, t) = −ik ·
∫

L2

dr jR(r, t) exp(−ik · r). (35)

When we neglect the first (nonlinear) term on the right-hand side of equation (34), which is
proportional to δφ2, the steady-state solution to equation (34) can easily be obtained. The
static structure factor in such a linearized approximation is thus expressed as

S(k) = 1

(∂Phomo(〈φ〉)/∂φ)T + Cgrad〈φ〉k2

k→0→
(

∂Phomo(〈φ〉)
∂φ

)−1

T

. (36)

One thus finds that, when the linearized approximation is valid, S(0) is simply given by the
isothermal compressibility of the homogeneous phase evaluated at φ = 〈φ〉, which can be
obtained directly through equation (4) or (11).

Figures 6(a) and (b) show the simulation results of S(k) for three different densities,
corresponding to those in figure 4. In the pure metallic and nonmetallic phases, the values
of S(k) are relatively small over the entire k regime. The extrapolation of the simulation
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Figure 6. Static structure factors for T = 1750 K and 〈φ〉 = 0.7 (triangles), 0.9 (circles) and 1.05
(crosses), calculated with (a) Cgrad/σ

2 = 1.0 and (b) Cgrad/σ
2 = 9.0. Upper and lower dots at

k = 0 depict the values of S(0) due to equation (36) for 〈φ〉 = 0.7 and 1.05, respectively.

data to k → 0 agrees with the compressibility of the corresponding homogeneous phase, as
equation (36) indicates. In the case of 〈φ〉 = 0.9, which corresponds to the M–NM transition
range, modest enhancement of S(k) can be observed. It remains to be seen whether such an
enhancement can be detected experimentally: the maximum wavenumber for S(k) achieved in
this theory is 0.27 Å−1, which is still smaller than the observable low-k limit (≈0.7 Å−1) [35] in
the x-ray diffraction measurements. Since separation into metallic and nonmetallic domains
occurs, deviations of local density from 〈φ〉 are fairly large, so that the linearized solution
(equation (36)) is no longer valid in the M–NM transition range.

In the case with Cgrad/σ
2 = 9.0, enhancement of S(k) in the small-k regime turns out

to be more pronounced compared to the case with Cgrad/σ
2 = 1.0. When Cgrad is large, the

appearance of the M–NM interface is energetically unfavourable; as a consequence, the size
of each domain tends to be large.

By taking spatial and time averages of the local free energy densities, we evaluate the total
free energy density of the system according to the relation [37]:

〈F〉 = −
(

σ

L

)2

ln

{∑
{φ}

exp

[
− 1

σ 2

∫
L2

drF[φ]

]}
. (37)

The pressure (in units of kBT/σ 3) can then be computed in accordance with P =
〈φ〉(∂〈F〉/∂〈φ〉)T − 〈F〉. The pressure–density relations so obtained are plotted in figure 7.
The simulation result with Cgrad/σ

2 = 1.0 shows a continuous increase of pressure as a
function of 〈φ〉 throughout the M–NM transition range, which is compatible with experimental
observations of gradual M–NM transitions [3]. The corresponding simulation result with
Cgrad/σ

2 = 9.0 exhibits a regime of negative compressibility, which signals the occurrence of
a discontinuous, first-order M–NM transition. When the gradient free energy does not play
an important role, the metallic and nonmetallic domains are mixed in an irregular manner and
the intrinsically discontinuous nature of the M–NM transitions may thus be smeared out.

Even in the case Cgrad/σ
2 = 1.0, a significant increase of the isothermal compressibility

can still be seen in the M–NM transition range. As we observe in figure 6(b), this does not lead
to a divergent increase of S(0), because the simple relation between the compressibility and
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Figure 7. Pressure–density relations at T = 1750 K. Simulation results with Cgrad/σ
2 = 1.0 and

9.0 are shown by circles and triangles, respectively. The full and broken curves are shown as guides
to the eyes. The dotted curve depicts the pressure curve corresponding to the sharp first-order phase
transition predicted by the equations of state for the homogeneous phases.

structure factor (equation (36)) no longer applies to an inhomogeneous two-phase state due
to the breakdown of the linearized approximation. As we see in figure 5, local densities vary
from cell to cell in an irregular way and long-wavelength density fluctuations such as those
near gas–liquid criticality cannot be observed.

6.2. Dynamic properties

When external pressure, such as the sound pressure, is suddenly applied to the system, the
system is brought to a transient non-equilibrium state,which subsequently undergoes relaxation
to a new equilibrium state via structural rearrangement. The dynamical characteristics of
such a structural relaxation may be analysed through the decay of the time-dependent density
correlation function [15, 16]:

C(k, t) = 〈δφ(k, t)δφ(−k, 0)〉
〈δφ(k, 0)δφ(−k, 0)〉 . (38)

When the amplitude of the density fluctuation is small enough for the linearized approximation
to be applicable, C(k, t) can be obtained from equation (34), which shows a simple exponential
decay:

C(k, t) � exp

{
−

[(
∂Phomo(〈φ〉)

∂φ

)
T

+ Cgrad〈φ〉k2

]
Dk2t

}
. (39)

Time evolutions of C(k, t) obtained by the simulation are illustrated in figure 8 for three
different densities in the case of kσ = 0.245. In the nonmetallic (〈φ〉 = 0.7) and metallic
(〈φ〉 = 1.05) phases, C(k, t) decays rapidly, with a timescale comparable to the microscopic
diffusion time, σ 2/D; the simulation results are excellently reproduced by the linearized
approximation, equation (39). On the other hand, significantly slow relaxation of C(k, t) can
be seen in the M–NM transition range (〈φ〉 = 0.9); moreover, relaxation of C(k, t) proceeds
in two steps, namely a fast relaxation in the early stage (t < 2σ 2/D) followed by a slow
relaxation in the later stage (t > 2σ 2/D).

Since density fluctuation itself is prevalent in any fluid, φ does not serve as a suitable order
parameter characterizing the M–NM transition. A relevant order parameter which is directly
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Figure 8. Relaxations of C(k, t) for kσ = 0.245 and T = 1750 K, where Cgrad/σ
2 = 1.0 is

adopted. Triangles and crosses represent the simulation results for 〈φ〉 = 0.7 and 1.05, respectively;
the dotted curves are the corresponding linearized solutions, equation (39). The simulation result
for 〈φ〉 = 0.9 is shown by circles and the full curve is for a guide to the eyes.
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Figure 9. Relaxations of CZ (k, t) for kσ = 0.245 and T = 1750 K, where Cgrad/σ
2 = 1.0 is

adopted. Triangles and circles represent the simulation results for 〈φ〉 = 0.7 and 0.9, respectively;
the full curves are for guides to the eyes.

related to the M–NM transition is the local ionization degree Z defined by equation (30). We
thus consider the dynamical correlation function

CZ (k, t) = 〈δZ(k, t)δZ(−k, 0)〉
〈δZ(k, 0)δZ(−k, 0)〉 , (40)

with

δZ(k, t) =
∫

L2
dr [Z(r, t) − 〈Z〉] exp(−ik · r) (41)

being the Fourier transform of Z(r, t). The simulation results for CZ (k, t) are displayed
in figure 9. Slow relaxation is again observed for 〈φ〉 = 0.9; moreover, it is noteworthy
that fast relaxation near t ≈ 0 observed in C(k, t) does not emerge in CZ (k, t). It can thus be
concluded that the fast relaxation of C(k, t) in the early stage corresponds to density relaxation
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Figure 10. Long-time behaviour of CZ (k, t) for kσ = 0.245 (dots) and kσ = 0.123 (crosses)
calculated at 〈φ〉 = 0.9 and T = 1750 K; Cgrad/σ

2 = 1.0 is adopted. The full curve represents
the exponential fit with τ = 241σ 2/D.

without the M–NM transition, while the slow relaxation of C(k, t) in the later stage originates
from the transformation between metallic and nonmetallic domains. The former process is
characterized by the conserved order parameter φ, while the non-conserved order parameter
Z plays an essential role in the latter process.

In the nonmetallic phase (〈φ〉 = 0.7), CZ (k, t) is related to the fluctuation of the 6p
conduction electron densities, which originates from fluctuations of the local energy gap; time
evolution of CZ (k, t) resembles that of C(k, t) and does not exhibit slow relaxation, as figure 9
indicates. In the pure metallic phase, we have a trivial result CZ (k, t) = 1 because Z(r, t) = 2
for any r and t .

We have also performed long-time simulations to observe time evolutions of CZ (k, t) at
〈φ〉 = 0.9 up to t = 260σ 2/D. As exhibited in figure 10, the result can be well reproduced
by an exponential function, CZ (k, t) = exp(−t/τ), through which the relaxation time τ is
obtained as τ = 241σ 2/D for kσ = 0.245. Noting that the diffusion constant of fluid mercury
in the M–NM transition range may be estimated as D ≈ 2 × 10−5 cm2 s−1 by applying the
Stokes’ law [14], D = kBT/2πησ , to the measured shear viscosity η [38], we obtain τ ≈ 9 ns;
this is roughly comparable to the experimental value of 2 ns [12]. When Cgrad/σ

2 = 9.0 is
adopted, the relaxation time becomes τ = 217σ 2/D; the dependence of τ on Cgrad is thus
found to be fairly small. The relaxation time for kσ = 0.123 turns out to be close to that for
kσ = 0.245.

6.3. Dependence on 
r

For all the cases in the present simulations, we have adopted 
r = 4σ , which corresponds
to the estimated minimum mesh size [32] for which the use of bulk free energies may be
valid. For comparison, we have also performed simulations with different values of 
r .
Figure 11 illustrates the histograms of φ at 〈φ〉 = 0.9 obtained with 
r/σ = 3, 4 and 5.
Density fluctuations tend to be enhanced as the degree of coarse-graining is reduced. When

r/σ = 3.0, the value of the distribution function at φ = φMNM is the largest among the
three cases, which implies that the transformations between metallic and nonmetallic states
occur most frequently; the corresponding relaxation time is found to be smaller by an order of
magnitude than the case with 
r/σ = 4.0.
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Figure 11. Histogram of φ at 〈φ〉 = 0.9 and T = 1750 K, obtained with 
r/σ = 3.0 (dotted
curve), 4.0 (full curve) and 5.0 (broken curve); Cgrad/σ

2 = 1.0 is adopted.

If the domains were of macroscopic dimensions, convergent results would be obtained
by choosing 
r as sufficiently smaller than the domain size yet substantially larger than the
atomic size. Creation of macroscopic domains is expected near gas–liquid transitions [31],
where (∂Phomo(〈φ〉)/∂φ)T becomes extremely small and the gradient free energy makes a
dominant contribution to the total free energy functional, equation (33). In the M–NM
transition of mercury, however, a dominant contribution to the integrand on the right-hand
side of equation (33) comes from the (∂Phomo(〈φ〉)/∂φ)T -related term rather than the Cgrad-
related term; the resultant phase patterns exhibit rather fine structures, as we have seen in
figure 5.

Application of coarse-grained theories to such mesoscopic inhomogeneities would be
the reason why the final results depend on 
r . Nevertheless, the advantage of our coarse-
grained approach should be stressed, because this is the first theoretical demonstration of
slow relaxation in the M–NM transitions of fluids, which has never been achieved by any
microscopic approach.

7. Summary and discussion

In conclusion, we have proposed a new theoretical approach to the M–NM transitions in
fluid mercury. Our theory is based on the dynamical LD equations for coarse-grained atomic
densities, combined with the free energy formulae for bulk nonmetallic and metallic phases
with the gradient correction.

Two important physical ingredients are involved in this formalism:

(i) input bulk free energy showing the characteristics of an electron-induced first-order phase
transition;

(ii) Langevin force responsible for thermal fluctuations and structural disorder.

The former acts to enhance the discontinuous character of the M–NM transition, while the
latter tends to smear out the discontinuities and to make the transition continuous. The overall
picture of the M–NM transition may be determined through an interplay between these two
competing effects. For instance, band overlap M–NM transitions in crystalline solids are
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usually discontinuous [1, 2], because the latter effect does not play a role in the presence of a
crystalline order. The present simulations indicate that both effects are crucial in the case of
fluid mercury.

The basic characteristics of the M–NM transitions in fluid mercury obtained in this work are
summarized: At low densities, the system is nonmetallic everywhere. As the average density
increases, the local density can exceed φMNM by thermal fluctuation and metallic domains
thus start to be created. In the M–NM transition range, metallic and nonmetallic domains,
with the respective average densities of φM and φNM, are inhomogeneously mixed. Thermal
fluctuations induce a local M–NM transition through transformation between the metallic and
nonmetallic domains. The resultant pressure–density relation shows continuous behaviour
across the M–NM transition. Isothermal compressibilities are significantly enhanced across the
transition, but this leads to only a modest enhancement of the long-wavelength static structure
factors, not in contradiction with the results of ab initio simulations [5] or x-ray diffraction
measurements [9, 35]. Also, Cohen and Jortner [7] showed that such inhomogeneous domain
structures can give a consistent explanation to the observed continuous change of transport
coefficients in the M–NM transition.

The timescale of structural relaxation involving such a local M–NM transition is
remarkably slow, because metallic and nonmetallic domains are highly stable and the transition
between them is a rare event; this is a direct consequence of the input free energy exhibiting
the nature of a first-order phase transition, as shown in figure 2. The experimentally deduced
relaxation time of the order of nanoseconds [12] is consistent with our simulation results, with
a characteristic domain size being approximately 4σ (=11.6 Å). This is roughly comparable
to the estimation by Cohen and Jortner [7] based on the data of transport coefficients, which
amounts to 30 Å.

In many cases, mechanisms of slow relaxation responsible for anomalous sound
attenuation can be interpreted within a phenomenological two-state model, where the transition
between a particular pair of states is regarded as a source of slow relaxation [39]. The
appearance of distinct ‘two states’ (i.e. metallic and nonmetallic domains) manifested in figure 4
is quite reasonable in light of such a general relaxation theory.

The present theory starts from free energy models having the characteristics of a
discontinuous phase transition as shown in figure 2, but this underlying discontinuity is
relatively small. The predicted domain size and the density difference between the two
phases are fairly small so that thermal fluctuations can significantly affect the nature of the
transition; the final simulation results thus exhibit continuous M–NM transitions. The situation
is in contrast to the gas–liquid phase separation, in which the domains have macroscopic
dimensions, with substantial differences in the densities of the two phases. Such strongly
discontinuous transitions are virtually unaffected by thermal fluctuations. We also note
here that the non-ideal-plasma theory of Redmer et al [6] fails to reproduce the continuous
M–NM transitions because the plasma theories treat the system as homogeneous. This fact
again indicates the importance of the fluctuation effects on the M–NM transitions.

The results presented here are still insufficient for quantitative comparisons with
experiments to be discussed, because we have adopted two-dimensional simulations and used
crude models for the equations of state. The difference between two- and three-dimensional
simulations may affect the amplitude of density fluctuations and hence the relaxation time. The
probability distribution function p(φ) of local density fluctuations sampled for each discretized
cell may be written as

p(φ) ∝ exp

{
− 1

2〈φ〉
(


r

σ

)3(
∂Phomo(〈φ〉)

∂φ

)
T

(φ − 〈φ〉)2

}
, (42)
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which is an approximate expression in the sense that density fluctuations in every cell
are assumed to be statistically independent with each other. Since the 
r -dependent
factor in the exponent is (
r/σ)3 in the three-dimensional case, in contrast to (
r/σ)2

in the two-dimensional case, the amplitude of density fluctuations tends to be suppressed
compared with the two-dimensional case studied here. On the other hand, the value of
(∂Phomo(〈φ〉)/∂φ)T in the true M–NM transition range should be smaller than the present
estimations, because the M–NM transition densities are significantly overestimated in this
work. Smaller (∂Phomo(〈φ〉)/∂φ)T means a larger amplitude of density fluctuations. In order
for correct predictions of the M–NM transition densities to be made, strong electron–ion
interactions beyond the nearly-free electron model should be taken into consideration in the
metallic equation of state.

Finally, we note that slow dynamics due to M–NM transitions has also been observed
experimentally in Te50–Se50 mixed fluids [41]. Mapping of the bulk free energy curve onto a
simplified Ginzburg–Landau-type functional form [31, 40] would be helpful for a systematic
study of various liquids, through which we might see whether slow dynamics due to M–NM
transitions is a universal phenomenon.
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Appendix. Derivation of equation (17)

The general expression for the band structure energy is given by [22, 23]

uBS = 1

2kBT V

∑
k �=0

k2

4πe2

[
1

εe(k)
− 1

]
|V p(k)|2S(k). (A.1)

Here, εe(k) refers to the static dielectric function of the electrons, S(k) denotes the static
structure factor of the ions and

V p(k) = −4π Ze2

k2

sin(k RM)

k RM
(A.2)

stands for the Fourier transform of the Shaw potential, equation (15).
To achieve the simplification of equation (A.1), the static dielectric function of the electron

liquid may be approximated as

εe(k) = 1 +
1

k2 D2
s

, (A.3)

where Ds is given by equation (18). Furthermore, we replace S(k) by that of a classical OCP
and adopt a simple functional form:

S(k) = k2

k2 + k2
IS

, (A.4)

where the parameter kIS may be chosen so as to satisfy the thermodynamic consistency
condition for OCP [42], namely

uOCP
ex = 1

2kBT V

∑
k �=0

4π(Ze)2

k2
[S(k) − 1]. (A.5)

By substituting equation (A.4) into (A.5) and noting that uOCP
ex ≈ −0.9� for � > 1 [42], we

obtain kIS = 1.8/(Z 1/3ae). Then, equation (17) follows from equation (A.1).
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